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INTRODUCTION

Given a domain B in the complex plane C, let F be a family of func-
tions, analytic and single valued in B (F …A(B)) and endowed with the
sup-(uniform) norm on compact subsets of B.

By Montel’s classical theorem about normal families of functions, if
there are two points a and b, a, b ¥ C, a ] b, such that each function f ¥F
does not take the value of a in B and takes the value of b not more than at
N different points in B, N—some fixed positive integer (N ¥ N), then F is
a normal family in B (cf. [Golusin]). We recall that a family F̃ of func-
tions analytic in some domain B̃ is normal, if from each infinite sequence
{fn} … F̃ one can select a subsequence which converges uniformly (in the



sup-norm) on each compact subset of B̃ either to an analytic in B̃ function,
or to infinity.

Before we continue we recall that a compact set E … C is said to be
regular, if its complement Ec :=C̄−E is connected and possesses a Green’s
function GE(z,.) with a pole at infinity such that for every zo ¥
“E limzQ z0, z ¥ E

c GE(z,.)=0. It is well known that if a compact set E is
regular, then its Green’s capacity Cap E is positive (see, for instance,
[Golusin], Chap. V). Given a number y > 1, we set Ey :=E 2 {z, z ¥ C,
GE(z,.) < log y}; E1 — E.

Let now F be a normal family in B. We observe that if some infinite
sequence {fn} …F converges uniformly on some regular compact subset of
B, then it converges necessarily locally uniformly inside B (uniformly in the
sup-norm on compact subsets of B).

Thus, a natural question arises: What happens if a sequence of analytic
functions converges on a regular compact subset K of some domain B and
does not take only one finite value in B? As it is known, in general only
these conditions alone do not provide a uniform convergence inside the
domain itself. This question appears to make sense for sequences of
approximating rational functions. To make things clear, we recall the
known result by Blatt et al. (cf. [BlSaSi]). For this purpose, we introduce,
for a compact set E, E ]”, a function f, continuous on E(f ¥ C(E)) and
a nonnegative integer n ¥ N, the notation Pn(f, E); that is a polynomial of
degree not exceeding n that best approximates f in the uniform norm on E.

Theorem 1 [BlSaSi]. Let E be a regular compact set in C. Given a
function f, f ¥A(Eo) 5 C(E) and f – 0 on each component of E, assume
there is a domain U with nonempty intersection with E such that the number
of zeros of Pn(f, E) on each arbitrary compact set K … U do not exceed o(n)
as nQ..
Then f admits an analytic continuation into the entire domain U.
Furthermore, under the above conditions the sequence {Pn(f, E)} converges
locally uniformly inside Er with r=inf{y, U … Ey} (and hence, f ¥A(Er)).

This result is a consequence of the fundamental theorem of Jentzsch’s
type concerning the asymptotic distribution of zeros of polynomials of best
uniform approximation. Another approach to the proof of Theorem 1,
based on Leja’s results, is given in [GiPl]. The method used in [BlSaSi] is
extendable to rational functions Rn, m(f, E) (n, the degree of the numera-
tor;m, degree of the denominator) of best uniform approximation of f on E,
with nQ. and m fixed. An analogue of Theorem 1 is proved with an
analytic continuation replaced by a meromorphic continuation with not
more than m poles and rational functions converging to f locally uniformly
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inside U-{the poles of f} (the poles being counted with regard to their
multiplicities). This result was established independently in [Kov1].

In these statements, an essential role is played by the fact that the
denominator’s degrees are fixed. It is an open problem whether a result of
the Blatt–Saff–Simkani type holds for rational sequences Rn, mn (f, E) of best
uniform approximation when the degrees of the denominators mn Q..

In the present paper, sequences of rational functions of best approxima-
tion with unbounded numbers of the finite poles are considered.

Before presenting the results, we introduce some notations. For n ¥ N,
we denote by Pn the collection of all polynomials of degree [ n; for
n, m ¥ N, we set Rn, m for all rational functions {r=p/q, p ¥ Pn, q ¥ Pm,
q – 0}. Given a compact set K and a function h(z) defined on K, n(h, K)
will stand for the number of all zeros of h(z) on K. For an infinite sequence
{fn} and a domain B, the notation {fn} …N(B) means that (a) fn ¥A(B)
for all n ¥ N starting with a number n0 ¥ N and (b) n(fn, K)=o(n) as
nQ. for every compact subset K of B. We will use the notations
{fn} …UB(B) to express that {fn} ¥A(B) is uniformly bounded inside B
(in the sup-norm on compact subsets), and {fn} …Lf(B)—that {fn} con-
verges locally uniformly inside B to the function f ¥A(B). In the sequel
{fn} …L(B) means that {fn} converges locally uniformly inside B.
Finally, given a closed set S … C, and a function f defined on S, we will
write f ¥A(S) to express that f is analytic in some neighborhood of S.
Given a domain D, a closed set S, S … D and function f, defined on S, we
will write f ¥AS(D) if there is a function F ¥A(D) such that F — f on S.
Analogously, we define f ¥AG(D) with G being a subdomain in D.

STATEMENT OF THE RESULTS

The main result of the present paper is

Theorem 2. Let S be a regular continuum in C and B a domain, B ‡S.
Let F :={fn}n=1, 2, ... be a sequence of rational functions, F …A(B), with a
total number of poles in Cb of every fn not exceeding n. Assume there is a
function f ¥A(S), f – 0 on some regular subset of S and such that

lim sup
nQ.

||fn−f||
1/n
S < 1. (1)

If

n(fn, K)=o(n) as nQ.

for each compact subset K of B, then F …L(B); thus, f ¥AS(B).
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In the present paper, we will apply Theorem 2 to rational functions of
best Lp-approximation.

Let c be a rectifiable curve in C, p—a positive number and let f be a
function of the class Lp(c) (this means that |f|p (t) is Lebesgue measurable
on c.) We adopt the notation ||f||Lp(c) :={>c |f(t)|

p |dt|}1/p. For any pair
(n, m) of nonnegative integers, let R (c, p)

n, m be a rational function of best
Lp-approximation of f with respect to || · ||Lp(c) in the class Rn, m; that is,

||f−R (c, p)
n, m ||Lp(c) :=inf ||f−r||Lp(c),

where the infimum is taken over r ¥ Rn, m.

Theorem 3. Let (n, mn) be a sequence of nonnegative pairs, mn [ n,
mn [ mn+1, nQ.. Given a closed analytic curve C with an interior G, a
positive number p and a function f, f ¥ Lp(C), assume

||R (C, p)
n, mn −f||Lp(C) Q 0 as Q.. (2)

Let U be a domain U, U ‡ Ḡ such that {R (C, p)
n, mn } …N(U).

Then f ¥AC(U) and {R
(C, p)
n, mn } …Lf(U).

Remark 1. Given a weight function w, a.e. positive and integrable over
the curve C, assume now f ¥ Lp, w(C) (i.e., |f|p w is Lebesgue measurable
on C). Set ||f||Lp, w(C) :={>C (|f|

p w)(t) |dt|}1/p and let R (C, p, w)
n, mm ¥ Rn, mn be a

rational function of best Lp, w-approximation of f on C. If 1/wq is inte-
grable over C for some positive number q, then Theorem 3 is extendable to
{R (C, p, w)

n, mm }.

As a particular case covered by Theorem 3 we point out rational
functions of best Lp-approximation of functions of Hardy’s class
Hp( :=Hp(T),T—the unit circle), as well as Lp-weighted rational
approximats of functions of the same class (w > 0 a.e. on T.) In the space
Hp( :=Hp(T) condition (2) is necessarily fulfilled (see, for instance,
[Timan, Chap. I].) Indeed, ||Pn−f||Lp(T) Q 0 as nQ. with Pn being a
trigonometric polynomial of best Lp-approximation of degree n of f on T;
statement (2) results now from the minimality property of R (T, p)

n, mn .
Set now D :=[−1, 1] and let the weight function w(x) be defined on

D; w > 0 a.e. on D. Assume f(x) ¥ Lp, w(D).
Given a pair of nonnegative integers (n, m), let R (p, w)

n, m be a rational func-
tion in the class Rn, m of best Lp, w-approximation of f on D. Applying
Theorem 2 we will establish

Theorem 4. Let w(x) be a real-valued weight function, a.e. positive on D

and integrable over D together with w−q(x) for a number q > 0. Assume that
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f ¥ Lp, w(D) is real-valued on D and let the sequence of pairs (n, mn) be as in
Theorem 3. If there is a domain U such that (a) U ‡ D and (b)
{R (p, w)

n, mn } …N(U), then f ¥AD(U) and {R
(p, w)
n, mn } …Lf(U).

As before, we observe that

||R (p, w)
n, mn −f||Lp, w(D) Q 0 as nQ.. (3)

BACKGROUND

The first result exploring the connection between zeros and analytic
continuability is the known Bernstein’s theorem;

Theorem 5 [Be]. Let the function f ¥ C(D) be real-valued on the
interval D. Assume that there is an ellipse E with foci at ±1 such that all
polynomials Pn(f, D) are, starting with a number no, nowhere zero in its
interior Eo.
Then f ¥AD(Eo)) and {Pn(f, D)} …Lf(Eo).

In the same paper, Bernstein pointed out that Theorem 5 holds only for
polynomials of best approximation.

Another result of Montel’s type is:

Theorem 6 [BGrM]. Let f(z)=;.

n=0 fnz
n be a power series with a

positive radius of convergence, let {pn}n=1, 2, ... be the main diagonal sequence
in the Padé table associated with f and U be a disk centered at z=0 such
that {pn} …N(U) for every n starting with some n0.
Then f ¥A(U) and {pn} …Lf(U).

Originally, Theorem 6 was established under the assumption that
{pn} …UB(U). It is easy to show that {pn} …N(U) leads to {pn} …UB(U).
Later, in 1982, the statement of Theorem 6 was established by A. A.
Gonchar under essentially weaker conditions, involving only {pn} ¥A(D),
n=1, 2, ..., 0 ¥ D with D representing a large class of sets in C (cf.
[Gon1]).

Further results of Montel’s type were obtained in [GrthSaff, Kov2,
Kov3].

PRELIMINARIES

Let f, g ¥ Lp[a, b]. We first remind of the basic fact that

||f+g||pLp[a, b] [ C(||f||
p
Lp[a, b]+||g||

p
Lp[a, b])
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with C=max[1, 2p−1];−. < a < b <. (cf. [Walsh1]). If p \ 1, then the
Minkowski inequality is valid, i.e.,

||f+g||Lp[a, b] [ ||f||Lp[a, b]+||g||Lp[a, b].

Given a set e of positive Lebesgue measure (we write m(e) > 0), let the
functions fn, n=1, 2, ... be defined on e. The sequence {fn} is said to
converge in measure on e, if for every positive e and d there holds
m{z, z ¥ e, |fn(z)−fm(z)| \ e} < d for all numbers n, m large enough
(cf. [Natanson]). By a theorem of Natanson, if some sequence {fn}
converges to a function f in Lp[a, b], then it converges in measure on
[a, b], too (cf. [Natanson]).

The function f is said to belong to Hardy’s class Hp (see, for instance,
[Privalov]) if (a) f ¥A(T), T := the unit disk and (b) suprQ 1
>2p0 |f(r exp(iy)|p dy is bounded. (If p=., then suprQ 1 |f(r exp(iy)|
should be bounded, respectively.)

If f ¥Hp, then the nontangential limits limzŒQ z, zŒ ¥ T f(zŒ) exist for
almost all z, z ¥T (T := the unit circle; cf. [Privalov]). One can define
f(exp(iy)), y ¥ [0, 2p] as the limit of f(r exp(iy)) as r Q 1. It is customary
to write f(exp(iy)) instead of limrQ 1 f(r exp(iy)). Recall that the nontan-
gential limit function f(exp(iy)) ¥ Lp(T) (cf. [Privalov]). If f, g ¥Hp and
f=g for z ¥ E, with E being a subset of T of positive measure, then f — g
(Privalov’s uniqueness theorem for Hp (cf. [Privalov].)) We recall that the
uniqueness theorem preserves its validity under the same condition
(namely, f=g on a subset of T of positive measure) for functions analytic
and single valued in T, also—the theorem of Privalov–Luzin (cf.
[Privalov]). Further, according to Ostrowski–Khinchine’s theorem, if some
sequence {fn} with fn ¥Hp and ||fn ||Lp(T) [ C1 for all n converges on T in
measure to some function f, then {fn} …LF(T) with a limit function F
coinciding with f a.e. on T and being an element of Hp.

In the sequel, Cn, n=1, 2, ..., denote positive constants which do not
depend on the integer n and are different at different occurrences.

The proofs will be preceded by a few lemmas.
Let F :={Fn}n=1, 2, ... be functions locally single-valued and analytic in

some domain B except perhaps for branch points, and let each |Fn | starting
with some number n0 be single-valued there. We say that some harmonic
function v is a harmonic majorant for F in B, if for every compact subsetM
of B the inequality

lim sup
nQ.

||Fn ||M [ exp ||v||M

is valid.
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Lemma 1 [Walsh2]. Let B be a domain in C, F :={Fn}
.

n=1 be a
sequence as above and let v be a harmonic majorant for F in B.
If there is a regular compact setM,M … B, where a strict inequality holds,
i.e., if

lim sup
nQ.

||Fn ||M < exp ||v||M,

then a strict inequality holds on every compact subset of B.

Of importance for the coming considerations is

Lemma 2. Let c be a closed analytic curve in C and p a positive number.
Denote by D the finite domain bounded by c. Let g ¥A(D) 5 C(D̄).
Then for each compact subset K of D there exists a constant C1=
C1(K, p) such that

||g||K [ C1 ||g||Lp(c) .

The case when c coincides with the unit circle T was considered by
Walsh (cf. [Walsh1, Chap. V]). The proof for the general case proceeds,
after mapping conformally D̄ onto T̄, along the same line of reasoning, so
we may omit it.

Lemma 3 [Gon2]. Let E be a regular compact set in C and D a domain,
D ‡ E. Given a sequence {Rn} of rational functions each with a total number
of poles in Cb [ n, assume Rn ¥A(D) for every n.
Then for every compact set K … D−E there exists a constant

l1(K) :=l1 > 1 such that for every n ¥ N the inequality

||Rn ||K [ ln1 ||Rn ||E

holds.

The constant l1(K) is given by l1(K)=supzŒ ¥K, zœ ¥ Dc GE(zŒ, zœ).
A similar result holds for Lp, w-norms, too. To be precise, we present

Lemma 4. Let E be a regular continuum and w(x)—a weight function,
a.e. positive and integrable over “E together with w(x)−q for some positive q.
Then there are for every p > 0 and for every compact set K, K … D−E,
a positive constants C2=C2(K, w, p) and l2(K)=l2 > 1, such that

||Rn ||K [ C2l
n
2 ||Rn ||Lp, w(“E).
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For the particular case, when “E is a closed analytic curve, Lemma 3 was
proved by Walsh (cf. [Walsh1, Chap.V]). The proof of the form presented
here follows the main idea of Walsh.

Analyzing the proofs of Lemma 3 and Lemma 4 we arrive at

Remark 2. Let {Kn} be a sequence of compact sets, ... ‡Kn ‡
Kn+1 ‡ ..., E= 5Ki. Then li(Kn, p)Q 1+ as nQ., i=1, 2.

In the forthcoming proofs we shall need an inequality of Nikolski-type
that estimates from above the uniform norm of a polynomial on the inter-
val D by its Lp-norm. Before, we recall some known definitions and facts
from [KrSwet].

Let w be a weight function, a.e. positive on D and such that >1−1 w(x)
dx=1. As usual, m stands for the equilibrium measure on D (m :=
1
p >D (dx/`1−x2)).Given a positive number e, set f(w, e) :=inf{>A w(x) dx :
A … [−1, 1], m(A) \ e} and let en(w) be a solution of the equation
f(w, e)=exp(−ne). As it is known (see [KrSwet]), en(w) is unique and
en(w)Q 0 as nQ..

Lemma 5 [KrSwet]. Let w be a weight function as above.
Then for every p > 0 and for every polynomial pn ¥ Pn, the inequality

||pn ||D [ exp(cnen(w)) ||pn ||Lp(D)

holds, where the positive constant c > 0 depends only on p and w.

PROOFS

Proof of Theorem 2. Under the conditions of the theorem and by
means of Lemma 3, Remark 2, there is a compact set S̃, S̃0 ]”, S … S̃ … B
such that

lim sup
nQ.

||fn+1−fn ||
1/n
S̃ < 1. (4)

Hence, fn converge as nQ. uniformly on S̃ to some function g ¥A(S̃).
In view of the conditions of the theorem, g – 0 on S̃ and f — g on S̃. Let S̃Œ
be a regular subset of S̃ of nonempty interior such that g ] 0 on S̃Œ. By
means of the classical Hurwitz’s theorem,

|fn |1/nQ 1, as nQ. (5)

uniformly on S̃Œ.
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Select now a simply connected domain W, satisfying S̃ …W … B. For
every n large enough, say n > n1, let pn(z) :=<kn

i=1(z−qi, n) be the monic
polynomial with zeros at all zeros of fn on W̄. (If kn=0, then pn(z) — 1.) In
view of the hypothesis of the theorem,

kn:=o(n) as nQ.. (6)

Observe that pn(z) ] 0 for z ¥ S̃Œ, as well as for z in some neighborhood
of S̃Œ. Therefore, by (5) and (6),

|pn(z)|1/nQ 1 as nQ. (7)

uniformly on S̃Œ.
On fixing an arbitrary point b in S̃Œ, we introduce into consideration the

sequence q :={qn}
.

n=n1 with qn :={p
−1
n ·fn}

1/n and every qn being that
regular branch inW for which |arg qn(b)| [ 1/n. Obviously, q …A(W).

We now claim that

qn(z)Q 1 as nQ. (8)

locally uniformly insideW.
Indeed, regarding (5) and (7), as well as the choice of the regular

branches, we see that (8) is valid uniformly on S̃Œ. Hence, by Lemma 3,
{qn} …UB(W). Statement (8) follows now after applying subsequently the
compactness principle and Vitali’s theorem.

From (8) and (6) we get

lim sup
nQ.

||fn ||
1/n
K [ 1

and

lim sup
nQ.

||fn+1−fn ||
1/n
K [ 1

with K being any compact subset ofW. By (1), the above inequality is strict
on S. Hence, owing to Lemma 1, a strict inequality holds on each compact
subset of W. Thus, {fn} …L(W), and, regarding (1), {fn} ¥Lf(W). On
lettingW tend to B, we arrive at the statement of Theorem 2. Q.E.D.

Proof of Theorem 3. Set R (C, p)
n, mn :=Rn, n=1, 2, ... .

Fixing an arbitrary point zo in G, let f be the unique univalent function
which maps G on {u, |u| < 1} in a way that f(zo)=0 and fŒ(zo) > 0. The
function f maps C onto {u, |u|=1} in a one-to-one way. Further, both
f, fŒ ¥A(G) 5 C(Ḡ). We remark that (in the case being considered) fŒ is
nonzero in Ḡ (theorems of Caratheodory and of Lindelöf, cf. [Golusin]).
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Let k(u) be the inverse of f(z); we recall that kŒ ¥A(T) 5 C(T̄) and
kŒ(u) ] 0 for |u| [ 1. Let (kŒ)1/p be that regular branch for which
(kŒ(0))1/p > 0.

Set rn :=(Rn p k)(kŒ)1/p; apparently, rn ¥Hp, n=1, 2, ... .
By means of Natanson’s theorem, {rn} converges in measure on T as
nQ.. With Ỹ being the limit function, we note that Ỹ(u)=
(f p k(u)) kŒ(u)1/p a.e. on T.

From (2), we get

||rn ||Lp(T) [ C3 (9)

for n large enough, say n \ n2. Consequently, regarding the Ostrowski–
Khinchine theorem, {rn} …L(T) and the limit function r, being an element
of Hp, coincides with Ỹ a.e. on T; hence r(u)=(f p k)(u) kŒ(u)1/p a.e. on
T. Recall that r(exp iy) should be regarded as limrQ 1 r(r exp iy).

Setting r p f :=Y, we get

lim
nQ.

Rn(z)=Y (10)

locally uniformly inside G; Y ¥A(G). We remark that the nontangential
limits Y exist for almost all z ¥ C and Y=f a.e. there.

Note that by virtue of Privalov’s uniqueness theorem, Y – 0 in G.
In the same way as in the proof of Theorem 2, we introduce the simply

connected domain W such that Ḡ …W … U. Using the same argumentation,
we see that

lim
nQ.
||Rn ||

1/n
K [ 1 (11)

for each compact set K inW .
We are now going to prove that

lim sup
nQ.

||f−Rn ||
1/n
Lp(C) < 1. (12)

For this purpose, we introduce, for r > 1, the level curve Cr :=
{z, GG(z,.)=ln r}.

Select a number m, 1 < m < sup {r, Cr …W}. Let w={wn}n=1, 2, ... be a
sequence of monic polynomials, nonzero in Gc and satisfying, for every
r > 1

lim
nQ.

>wn(u)
wn(v)
>1/n
u ¥ C, v ¥ Cr

=
1
r
.

AN ANALOGUE OF MONTEL’S THEOREM 65



For each n, let Wn be the polynomial of degree n which interpolates the
rational function Rn+1(z) at all zeros of wn+1(z). The application of the
Hermite–Lagrange interpolation formula yields for each z ¥ C

Rn+1(z)−Wn(z)=
1
2pi

F
Cm

wn+1(z)
wn+1(t)

Rn+1(t)
t−z

dt.

Select now a positive number G1 such that exp G1 < m. For all n sufficiently
large, say n > n3, we may write, after taking into account (11)

||Rn+1−Wn ||Ḡ [ C4(exp G1/m)n. (13)

On the other hand, we have an obvious inequality

||Rn+1−Wn ||Lp(C) [ C5 ||Rn+1−Wn ||Ḡ. (14)

Consider first the case when p < 1. By the minimality property, we have

||f−Rn ||
p
Lp(C) [ ||f−Wn ||

p
Lp(C) [ ||f−Rn+1 ||

p
Lp(C)

+||Rn+1−Wn ||
p
Lp(C).

After taking into account (13) and (14), we obtain

||f−Rn ||
p
Lp(C)−||f−Rn+1 ||

p
Lp(C) [ C6{exp G1/m}pn. (15Œ)

For p \ 1, after handling ||f−Rn ||Lp(C) similarly and applying the
Minkowski inequality, we get

||f−Rn ||Lp(C)−||f−Rn+1 ||Lp(C) [ C7{exp G1/m}n. (15œ)

In view of the of the conditions of the theorem, for every n the inequality
||f−Rn ||Lp(C) \ ||f−Rn+1 ||Lp(C) holds. With this remark, (12) follows now
from inequalities (15) and (2), after passing to the limit.

Let now E be a regular continuum in G. The application of Lemma 2
leads, thanks to (12), to the inequality

lim sup
nQ.

||Rn+1−Rn ||
1/n
E < 1.

Hence, regarding (10), we get

lim sup
nQ.

||Rn−Y||1/nE < 1.

Thus, all conditions of Theorem 2 are fulfilled with respect to the sequence
{Rn}. By this, Theorem 3 is proved. Q.E.D.
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Proof of Remark 1. Recall that w is nonnegative on C and integrable
together with w−q for some q > 0. Following [Walsh1, Chap. V], we have,
by the Hölder inequality

F
C

|f(t)−R (C, p, w)
n, mn (t)|

pq/(1+q) |dt|

[ 1F
C

1
w(t)q

|dt|2
1/(1+q) 1F

C

w(t) |f(t)−R (C, p, w)
n, mn (t)|

p |dt|2
q/(1+q)

.

Joining (12), we are capable of proving analogues of Lemmas 2. and 3. for
weighted Lp-approximation. With these notations, the proof in question
follows the main idea of the proof of Theorem 3. Q.E.D.

Proof of Theorem 4. Set, as before, Rn :=R (p, w)
n, mn . We presume f not to

vanish identically on some subinterval Dg of D of positive length. Addi-
tionally, we assume that >1−1 w(x) dx=1 and that U is a bounded domain.

Thanks to (3), we have

||Rn ||Lp, w(D) [ C8 (9Œ)

with C6 being an appropriate positive constant and n \ n4. We remark that
(9Œ) preserves its validity for any subinterval of DŒ. Taking into account (9Œ),
(3) and Remark 2, we obtain

lim
nQ.
||Rn ||

1/n
DŒ =1 (16)

for any regular subinterval DŒ of D.
Set Rn=Pn/Qn, Qn(z)=< (z−g −n, i)< (1−z/g'n, i), where g −n and g'n

are those zeros of Qn which are situated on the disk D :={z, |z| [
2 diam(U)} and outside, respectively.

Let now W, V be simply connected domains such that D … W̄ … V … U.
As above, let pn, n=n4, ... be the monic polynomial of degree kn=
n(Rn, V̄), the zeros of which coincide with all zeros of Rn on V̄. Recall that

kn=o(n) as nQ..

Hence, for every regular compact set K inW,

lim sup
nQ.

||pn ||
1/n
K [ 1.

On the other hand, we have (cf. [Golusin, Chap.V])

lim inf
nQ.

||pn ||
1/kn
K \ Cap K. (17)
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Combining both inequalities, we get, for every compact subset K of W,
that

lim
nQ.
||pn ||

1/n
K Q 1. (18)

For any n, n \ n4, select a number an, an ¥ D such that Rn(an) ] 0
and introduce qn :={Rnp

−1
n }

1/n with |arg qn(an)| [ 1/n. Apparently, the
rational functions qn do not vanish on W̄ and {qn} ¥A(W).

On writing Pn=pn pn, we observe that qn :=(
pn
Qn
)1/n.We claim that

qn Q 1 as nQ. (19)

locally uniformly insideW.
First, we show that {qn} ¥UB(W).
Indeed,

||Rn ||Lp(D)=
1

|Qn(tn)|
||Pn ||Lp(D)

for an appropriate point tn, tn ¥ D; this equality implies together with (9Œ)

||Pn ||Lp(D) [ C8 ||Qn ||D.

By means of Lemma 5

||Pn ||D [ C
n
9 ||Qn ||D, n \ n5,

where C9 stands for exp c and n \ n5 is sufficiently large such that
en(w) < 1.

Select now a number R, R > 1 in the way that the interior of the ellipse
ER :={z=x+iy, (2Rx/(R2+1))2+(2Ry/(R2−1))2=1} contains Ū. Esti-
mating now ||Pn ||ER by the lemma of Bernstein–Walsh, we come to

||Pn ||ER [ ||Pn ||D R
n [ ||Qn ||(D) C

n
9R
n,

which implies

||Pn ||ER [ C
n
10R

n.

From here we get

||pn ||ER [
Cn10R

n

Ckn11
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with C11 :=min{|pn(z)|, z ¥ ER}. Recalling that kn=o(n) as nQ., we
arrive at

||pn ||ER [ C
n
12 (20)

with C12 depending on R andW but not on n. Given a compact subset K of
W, we have

||qn ||K [ {||pn ||K/min{|Qn(z)|, z ¥K}}1/n

[ {||pn ||ER/min{|Qn(z)|, z ¥W}}
1/n [ C13.

Thus, {qn} ¥UB(W).
Let now DŒ be an arbitrary regular subinterval of D. Thanks to

|Rn(z)|1/n=|pn(z)|1/n |qn(z)| (21)

and with regard to (16) and (18), we may write

lim inf
nQ.

||qn ||DŒ \ 1.

Hence, there exists a sequence {on}, on ¥ DŒ such that lim infnQ. |qn(on)|
\ 1. On the other hand, regarding again (21) and taking into account (17),
we obtain that

lim sup
nQ.

|qn(yn)| [ 1

for an appropriate sequence {yn}, yn ¥ DŒ, |pn(yn)|=||pn ||DŒ.
Let now X̃ be any limit function of the sequence {qn}; that is:

X̃=limn ¥ L qn locally uniformly inside W for some infinite sequence L.
Keeping in mind both last relations, we see that |X̃| takes the value of unity
at least one time on each arbitrary regular subinterval DŒ of Dg. Hence,
|X̃| — 1 on Dg. Statement (19) results immediately from the symmetry of the
functions Rn, n=1, 2, ... with respect to the real axes, after keeping track
of the choice of the regular branches qn.

Thanks to the arbitrariness of W, the convergence (19) takes place
everywhere inside the entire domain U (on compact subsets).

Coming back to the functions Rn, we get, regarding (18), that

lim sup ||Rn ||
1/n
K [ 1 as nQ.

for every compact subset K in U.
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In the same way, as in the previous proofs, we show that

lim sup
nQ.

||f−Rn ||
1/n
D < 1.

Hence,

lim sup
nQ.

||Rn+1−Rn ||
1/n
Lp, w(D) < 1

and

lim sup
nQ.

||Rn+1−Rn ||
1/n
E < 1

for an appropriate regular compact set E of nonempty interior with
D … E … U. Thus, {Rn} converges uniformly on E to a function, say F(z),
where F(z) ¥A(E), F(z) — f a.e. on D and lim supnQ. ||f−Rn ||

1/n
E < 1. By

this, all conditions of Theorem 2 are fulfilled with respect to the sequence
{Rn, mn} and Theorem 2 is applicable. Q.E.D.
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